From the expansion (3.6) it is seen that in the case of potential mass forces, some time after the start
of the flow, regardless of the initial condition, the lowest harmonic will predominate in it,

1
2 afyexp(—And) Vil
m=—1
it represents differential rotation about some axis proportional to the aximuthal component of a helical Hill
vortex, described in [5], and damped in proportion to exp (—20,19pR™%t),
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NONISOTHERMAL FLOW INDUCED BY THE SQUEEZING
OF A NON-NEWTONIAN FLUID FILM BETWEEN
TWO PARALLEL PLATES

Yu. V. Kazankov and V. E, Pervushin UDC 532.5:532.135

In the pressure forming of thin-sheet products, the polymer melt is injected into the cavity formed by
partially contacting hali~molds. The next stage is the joining of the half~molds, during which time the melt is
squeezed to fill the mold cavity and harden at the end of the process.

Here we consider the problem of nonisothermal flow induced in a molten polymer film between two
parallel plates (half-molds), which are squeezed together at a rate v in the direction normal to the plane of the
plates. We investigate the temperature regime of the fluid cooling process as a function of the governing
parameters of the problem.

It is assumed that the fluid is incompressible and obeys a power rheological law, where the consistency
depends on the temperature T: p=p(T).

The temperature of the fluid at the initial time is T;, and the wall temperature is Ty (Ty, < Ty).

To the best of our knowledge, this kind of problem has been investigated only in [1]. However, to sim-
plify the solution the authors have, without justification, rejected the convection term in the heat-balance equa-
tion.

We introduce a cylindrical coordinate system with the z axis directed perpendicular to the plane of the
plates and with the origin situated at the center of the lower plate (Fig. 1). The radius of the fluid film R(t) is
a function of the time t and is determined from the condition of a constant initial volume of the fluid.

Taking axial symmetry into account, we find that the tangential component of the velocity Vo and the
derivatives of all variables with respect to ¢ are equal to zero. .

Under the condition that body forces and surface-tension forces are negligible, the stated problem cor-
responds to the system of equations
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in which r is the radial coordinate, vy and v, are the radial and transverse components of the velocity, p is the
density of the fluid, p is the pressure, n is the exponent in the power rheological law, and a is the thermal dif-
fusivity.

Considerable difficulties are met in the solution of the system (1)-{4), even by computer-oriented
numerical methods. We use the following procedure to simplify the system (1)-(4): By a suitable choice of
scales we transform the system to dimensionless form in such a way as to make the order of each variable
equal to unity [2]. Under this transformation the influence of the terms of the equations are estimated by the
dimensionless factor associated with the transformation from the system (1)-(4) to the system containing
dimensionless variables.

We introduce the scales R(t) for the radial coordinate; H(t)/2 for the transverse coordinate, where H(t) is
the distance between the plates; vy =—H(0)'(0) for the transverse velocity, where £(t) = H(t)/H(0); (Ty— Ty)
for the temperature; 7, = H(0)/2v, for the time.

The scale for the radial component of the velocity, denoted by vy, is obtained from the equation of con~
tinuity (4) and is expressed in terms of the above-defined velocity and length scales in the form vy = 2R(t)vy/H(1).

We take as the characteristic pressure p; the average pressure on the plates for the case of isothermal
flow of the fluid; this quantity can be estimated by analogy with the approach in [3], where isothermal flow
induced by the squeezing of a Newtonian fluid layer between two parallel plates is investigated.

The heat-conduction equation must be transformed with regard for the existence of different time scales
characterizing the dynamics of evolution of the fluid flow and the temperature field. If we assume that the tem-
perature variation is determined mainly by molecular heat conduction, then by replacing the derivatives in Eq,
(3) (in which convection terms are neglected on the left~hand side) by the ratios of finite increments, we obtain
a time scale characteristic of the evolution of the temperature field: 7, = H%(0)/Aa.

The transformation from the system (1)-(4) to the system containing dimensionless variables and the sub-
sequent order-of-magnitude estimation of the terms with regard for the fact that H(f) «R(t) and Ty < T, yield
major simplifications. Omitting the simple calculations, we give the final form of the approximate system of
equations, rewriting it in the new dimensionless variables:

ar\ . } av, \n . 5
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where 8 = (T — Ty, )Ty — Ty ); n=2rHQ); §=22/H(t); Vi = vlve, Vo = v/vy; P = piPy, Py = w(To)(20/HO))";
1.

T =54adt1/H2(t1); ¥(@) = w(T)/n(Ty); and Pe = v H(0)/2a is the Peclet number.
0

The system (5)=(7) is solved under the following initial and boundary conditions:

(8)
Va=0, Vi =q(t), @ =0 for E=0; '

OValdt = 0, Vi =0, 96/0E = 0 for E = 1; ©)
0=10<E<L1), ®@=0 for §=0, 7=0; (10)
P =0 for y=Ry@), (11 -

where the radius of the film R,(7) is found from the condition of a constant fluid volume:
Ry(x) = 2ROf-*2(0)/H(0), ¢(x) = f(@)/f'(0), f(x} = H(z)/H(0).

Simple transformations reduce the solution of the system (5)=(11) to the solution of a nonlinear integro-
differential equation of the heat~conduction type.

Thus, integrating Eq. (5) subject to the first boundary condition (9), we obtain

AN ARGl

o T\ o
Integrating the resulting equation from 0 to £ and invoking the first boundary condition (8), we obtain an
expression for the radial velocity: ‘
Vy = (—dPldg)tn @)d(x, E), (12)
where

&
D(r, 5= | [(1—&) ¥ (©)]"dE
]
From the equation of continuity (7), using the boundary conditions (8) and (9), we obtain

¢ \ (13)
1 (1) dni= <%Sn"nd§)dn-

[1]

Integrating Eq. (13) from 0 to 5, we have
1
@ (T} n%/2 = | nVndE + const.

0

Setting 7 = 0 in this equation, we find in succession

const = 0,
1
1/n
emz=n(—2L" 1 [ @ paz (14)
]

We introduce the function

1 —n 1§ o \-n
@, (1) = {,S @ (1, &) da} = {fd&j [(1—g)w™? (@),z"”dal}
(] Q [}
and rewrite Eq. (14) in the form
<_ %) = {g ()7 (O (0/2)" D (7). (15)
We are now in a position to eliminate the factor (—dP/dx) in (12):

Va=e(@nD(, E)/ (2 fo dg). 16

Integrating the pressure-gradient equation (15) from 7 to R;(7) and taking (11) into account, we obtain
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from which we determine the-average pressure on the plates

Ry (1) -2 N
) . 1 n[ 2R, (0) 1*+1, _sniqy _ (17
Py=2 | Plr,mdnA(x) = g [SE] [ [y 2<r>/(2ffb<~, oa)
0 0
Returning to Eq. (7), we rewrite it with regard for (16):
Ve 1.9(nVy) (18)
6_5—2_71'—6—!1—_———‘?(1 YO (1, § )/jm(Tz £) dg.

We integrate Eq. (18) from 1 to £. The second boundary condition (9) enables us to obtain an explicit
expression for the transverse velocity component:

1 1
V= cp(r)gSfD(n &)d&/ja)(r, £) dE.
o

We have thus reduced the problem to the solution of the integrodifferential equation

1 1
2 4 Pes 00 [ fo em&/ foey a'a]%;? =29 -9
5 0

1

subject to the boundary and initial conditions

©=0"for £=0; (20)
90/t = 0 for E = 1; 21
0=10<t<t,T=0),€=0fr g=0. 22)

For Pe = 0 (i.e., in the absence of thermal convection) the system (19)-(22) admits an exact solution [4].
The system (19)~(22) is approximated by a six-point implicit difference scheme and solved numerically on a

computer,

This approach has been used previously for the numerical solution of the system of boundary-layer equa-
tions in a compressible gas flowing longitudinally past a plate [5].

It is assumed in all the calculations that the temperature dependence of the reciprocal of the fluid con-

sistency has the form
1/exp [b/(® —0)], f O©>0,
y-! 6) = { P [b/( 1) 1 (23)
0, if OO,

where b and @; are positive constants, and the velocity of the plates is constant, ¢(1)=1; in this case, as is

readily verified,
flv) = 1/(1 + Pex).

Figure 2 illustrates the evolution of the temperature field with time (n = 0.33, b = 1.35, ®; =.0.2). ‘
parameter indicated by the numbers attached to the solid curves is the dimensionless time (Pe = 40 for all the

/
(I

Fig. 3
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curves). The dashed curves represent the temperature distribution for fixed 7= 0.02 and various values of the
Péclet number: 1) Pe= 0; 2) Pe= 20; 3) Pe = 30.

The error of the calculations can be estimated indirectly by comparing curve 1 with the exact solution in
[4]. This comparison discloses their full agreement up to the third decimal place, i.e., within the error limits
of the computational scheme (the computational steps are A¢ = 0.01, At = 0.001, and the order of approximation
of the difference scheme is o(AT+A£%) [5]).

The temperature distribution of the fluid as a function of the parameters n and b is given in Fig, 3 (Pe =
40, © = 0.2): 1) 7=0.02,b=1.35,n=1; 2) 7=0,02,b=1.35, n=0.5; 3) 7= 0.04, n=0.33,b=1.35; 4 7=
0.04, n=0.33, b = 0,5.

A graphic representation of the most characteristic features of the variation of the average pressure on
the plates is given in Fig. 4, in which the solid curves correspond to fixed values of the parameters n = 0.33,
b = 1.35, ® = 0.2, B = 2R{(0)/H(0) = 50. The parameter of the curves is the Péclet number: 1) Pe = 40; 2) Pe =
30; 3) Pe ='20. The dashed curve represents the variation of the average pressure on the plates for b = 0.5
(the other parameters have the same values as for curve 1).

As expected, the curves (P) = F(7) muét tend to the same asymptote as 7—«, irrespective of the expo-
nent b of the exponential function in (23), and so the differences between them {for a fixed value of Pe) become
inconsequential, beginning with a certain value of 7.
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